Abstract

The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.