Abstract

Activation of postsynaptic GABA-B receptors enhances tonic inhibition mediated by high-affinity extrasynaptic GABAA receptors in dentate gyrus granule cells (DGGCs), thalamocortical neurons, and cerebellar granule cells. We investigated the mechanism(s) of GABA current modulation by GABAB receptors in DGGCs using a combination of electrophysiological and biochemical approaches. In acute hippocampal brain slices the GABAB receptor agonist baclofen increased GABA-evoked currents in ∼2/3rds of DGGCs, significantly increasing GABAA currents by 41% on average. Nonstationary noise analysis was performed to estimate the effects of baclofen on single channel conductance, mean open time, and channel number; these estimates suggest that GABAB receptor activation increases receptor number but does not modify single channel properties of GABAA receptors. To directly assess baclofen-induced changes in plasma membrane expression of GABAA receptors, biotinylated western blots were performed. Treatment of hippocampal slices with baclofen significantly increased the surface expression of GABAA receptor subunits (both δ and γ2 subunits) and this effect was inhibited by the GABAB receptor antagonist CGP55845. These data indicate that changes in membrane trafficking and increased number of GABAA receptors in plasma membrane contribute to the enhancement of GABA currents produced by GABAB receptor activation in DGGCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call