Abstract
Previous studies have shown the cone photoreceptors form reciprocal synapses with horizontal cells during the first week after birth in rabbits. These synapses constitute pioneering elements of the developing outer plexiform layer. We now report that antibodies against the α-1 and against the β- 2 3 subunits of the GABA-A receptor label a highly restricted sublamina in the developing outer plexiform layer known to contain nascent cone photoreceptor terminals. Staining is relatively weak at birth, increases to maximal levels between postnatal days 5 and 7, and is significantly reduced in the adult. These results support recent calcium imaging studies which have shown that the activation of GABA-A receptors causes an increase in intracellular free calcium in cones, an effect which is observed only at 3–9 days after birth. The transient expression of GABA-A receptors in this region coincides with the period of peak expression of GABA immunoreactivity in horizontal cells. A direct functional link between GABAergic transmission and cone synaptogenesis is suggested by previous reports that GABA-A receptor antagonists cause disruption of cone synaptogenesis. Together these findings support the notion that GABA functions as a developmental neurotransmitter which is produced by horizontal cells and interacts with developing cone axons in order to facilitate synaptic linkage between these two cells types.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have