Abstract

GaAs-based single electron transistors (SETs) and their logic inverters were successfully designed and fabricated using a Schottky wrap-gate (WPG) quantum wire and dot formation technology. Three-gate WPG SETs, which have two tunnel barrier gates and a center gate for a quantum dot-potential control, showed voltage gains larger than unity due to tight dot-potential control of the center WPG. The conductance peak position of the SET could be systematically controlled by changing the tunnel-barrier-control WPG voltages. A resistive-load single electron inverter utilizing a 3-gate WPG SET as a driver and a WPG quantum wire transistor as an active load was fabricated and it showed a proper inverter operation at 1.6 K and realized a logic transfer gain of larger than unity (1.3) for the first time in III-V semiconductor-based SET inverters. A III-V semiconductor-based complimentary inverter utilizing two 3-gate WPG SETs was also successfully fabricated for the first time and the inverter operation was also confirmed at 1.7 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call