Abstract

AbstractGaAs based metamorphic and pseudomorphic high electron mobility transistors (HEMTs) under DC and thermal stress were studied. InAlAs/InGaAs MHEMTs grown on GaAs substrates were stressed at a drain voltage bias of 2.7V for 36 hours as well as thermally stressed at 250°C for 36 hours. Under both stress conditions, the drain current density decreased about 12.5%. The gate current, however, increased more after the thermal storage as opposed to DC bias. Reaction of the Ohmic contact with the underlying semiconductor was the main cause of degradation after thermal stressing. Transmission electron microscopy verified that gate sinking occurred in devices that underwent DC bias stressing. InGaAs pHEMTs that received a 1000 hour lifetime stress test from a commercial vendor showed similar degradation as virgin devices when stressed under DC bias for 24 hours. Virgin devices that were thermally stressed while undergoing DC bias showed minimal degradation up to 120°C, but exhibited catastrophic failure at 140°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.