Abstract
More and more attention has been paid to hospital facilities since modern pandemics have emerged such as SARS and avian influenza. Energy consumption by buildings accounts for 20-40% of energy use in developed countries, so many global organizations make efforts to develop sustainable technologies or materials to create a sustainable environment, and to reduce energy consumption when renovating building. Therefore, maintaining high standards of hygiene and reducing energy consumption has become the major task for hospital buildings. This study develops an integrated decision support system to assess existing hospital building conditions and to recommend an optimal scheme of sustainable renovation actions, considering trade-offs between renovation cost, improved building quality, and environmental impacts. A hybrid approach that combines the A* graph search algorithm with genetic algorithms (GA) is used to analyze all possible renovation actions and their trade-offs to develop the optimal solution. A simulated hospital renovation project is established to demonstrate the system. The result reveals the system can solve complicated and large-scale combinational, discrete and determinate problems such as the hospital renovation project, and also improve traditional building condition assessment to be more effective and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.