Abstract
Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77μM), high sensitivity (1.122μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10-1,000μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have