Abstract
In industrial applications, robotic arm grasp detection tasks frequently suffer from inadequate accuracy and success rates, which result in reduced operational efficiency. Although existing methods have achieved some success, limitations remain in terms of detection accuracy, real-time performance, and generalization ability. To address these challenges, this paper proposes an enhanced grasp detection model, G-RCenterNet, based on the CenterNet framework. First, a channel and spatial attention mechanism is introduced to improve the network's capability to extract target features, significantly enhancing grasp detection performance in complex backgrounds. Second, an efficient attention module search strategy is proposed to replace traditional fully connected layer structures, which not only increases detection accuracy but also reduces computational overhead. Additionally, the GSConv module is incorporated during the prediction decoding phase to accelerate inference speed while maintaining high accuracy, further improving real-time performance. Finally, ResNet50 is selected as the backbone network, and a custom loss function is designed specifically for grasp detection tasks, which significantly enhances the model's ability to predict feasible grasp boxes. The proposed G-RCenterNet algorithm is embedded into a robotic grasping system, where a structured light depth camera captures target images, and the grasp detection network predicts the optimal grasp box. Experimental results based on the Cornell Grasp Dataset and real-world scenarios demonstrate that the G-RCenterNet model performs robustly in grasp detection tasks, achieving accurate and efficient target grasp detection suitable for practical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have