Abstract
Alzheimer's disease (AD) is characterised by extracellular deposition of amyloid-β (Aβ) in amyloid plaques and intracellular aggregation and accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFTs). Although several kinases have been identified to contribute to the pathological phosphorylation of tau, kinase-targeted therapies for AD have not been successful in clinical trials. Critically, the kinases responsible for numerous identified tau phosphorylation sites remain unknown. G protein-coupled receptor (GPCR) kinases (GRKs) have recently been implicated in phosphorylation of non-GPCR substrates, for example, tubulin and α-synuclein, and in neurological disorders, including schizophrenia and Parkinson's disease. Accordingly, we investigated the involvement of GRKs in the pathophysiology of AD. We performed a comprehensive immunohistochemical and biochemical analysis of the ubiquitously expressed GRKs, namely, GRK2, 3, 5 and 6, in postmortem human brain tissue of control subjects and AD patients. GRKs display unique cell-type-specific expression patterns in neurons, astrocytes and microglia. Levels of GRKs 2, 5 and 6 are specifically decreased in the CA1 region of the AD hippocampus. Biochemical evidence indicates that the GRKs differentially associate with total, soluble and insoluble pools of tau in the AD brain. Complementary immunohistochemical studies indicate that the GRKs differentially colocalise with total tau, phosphorylated tau and NFTs. Notably, GRKs 3 and 5 also colocalise with amyloid plaques. These studies establish a link between GRKs and the pathological phosphorylation and accumulation of tau and amyloid pathology in AD brains and suggest a novel role for these kinases in regulation of the pathological hallmarks of AD.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have