Abstract

Properties of inwardly directed rectification and its G protein-mediated inhibition in guinea pig chromaffin cells were studied using the whole cell version of the patch-clamp technique. The current-voltage (I-V) relationship for plateau currents in response to a 50-ms pulse showed an inwardly directed rectification between -80 and -140 mV and a negative slope at more negative potentials in normal solution. Replacement of Na+ with N-methyl-D-glucamine (NMDG) in the perfusate did not alter the plateau I-V relationship between -110 and -130 mV but did abolish the negative slope below -140 mV. The zero current or resting membrane potential in the NMDG solution was in fair agreement with the equilibrium potential for K+. The chord conductance-voltage relationship showed a good fit with the Boltzmann equation and shifted along the voltage axis by an approximate change in driving force on K+ when K+ concentration was increased. External Cs+ and Ba2+ produced a voltage-dependent inhibition of the inwardly directed rectification. These results indicate that inwardly rectifying (IR) K+ channels are mediating an inwardly directed rectification. Intracellular dialysis with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) produced a complete suppression of this IR K+ channel, irrespective of treatment with pertussis toxin. Adding GTP or guanosine 5'-O-(2-thiodiphosphate) to the patch solution resulted in a decrease in GTP gamma S inhibition of the K+ current. Internal application of vanadate was without effect. Time course of the inhibition of the IR K+ current coincided in part with that of inactivation of a nonselective cation current. In conclusion, IR K+ channels in the chromaffin cell are subject to G protein-mediated inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.