Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion was Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have