Abstract

Insulin-like growth factor-1 (IGF-1), an endogenous peptide, exerts important role in brain development, neurogenesis and neuroprotection. There are accumulating evidence for the interaction of IGF-1 and 17β-estradiol systems. IGF-1/IGF-1 receptor (IGF-1R) signaling has been reported to regulate G-protein estrogen receptor (GPER) expression in cancer cells. Whether GPER is involved in the neuroprotective effect of IGF-1 against MPTP/MPP+-induced dopaminergic neuronal injury remains unclear. We showed that IGF-1 could improve MPTP-induced motor deficits and ameliorate the decreased contents of DA and its metabolites in striatum as well as the loss of TH-IR neurons in the substantia nigra (SN). IGF-1 pretreatment also reversed the changes of Bcl-2 and Bax protein expressions in SN in MPTP mice. These effects were abolished by IGF-1 receptor (IGF-1R) antagonist JB-1 or GPER antagonist G15 except the inhibitory effect of G15 on Bax protein expression. Moreover, IGF-1 pretreatment enhanced cell survival against MPP+-induced neurotoxicity in SH-SY5Y cells. IGF-1 exerted anti-apoptotic effects by restoring MPP+-induced changes of Bcl-2 and Bax protein expressions as well as mitochondria membrane potential. Co-treatment with JB-1 or G15 could block these effects. Furthermore, IGF-1 regulated the protein expression of GPER through activation of phosphatidylinositol 3-kinase (PI3-K) and mitogen-activated protein kinase (MAPK) signaling pathways. Overall, we show for the first time that GPER may contribute to the neuroprotective effects of IGF-1 against MPTP/MPP+-induced dopaminergic neuronal injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call