Abstract
Adipose tissue formation and moderate fat deposition are important for the production performance and eating quality of livestock meats. The self-renewal and adipogenic differentiation of adipose-derived stem cells are responsible for the formation and development of adipose tissue. In addition, estrogen targeting G protein-coupled estrogen receptor 1 (GPER1) has been reported to modulate cell proliferation and differentiation during tissue and organ development. However, the potential correlation among estrogen, GPER1, proliferation, and adipogenic differentiation in goat adipose-derived stem cells (gADSCs) is still unclear. Herein, we demonstrated that 17β-estradiol enhances the proliferative ability of gADSCs, indicated by the increased cell number and cell viability, accompanied by up-regulated expressions of cyclin D1 and PCNA. Meanwhile, the adipogenic differentiation is promoted by 17β-estradiol, supported by higher ccumulation of intracellular lipids and increased expressions of PPARγ, ACC, and FABP4. Notably, these activities are all obviously reduced by administration with GPER1 antagonist G15, but GPER1 agonist G1 enhances cell proliferation and adipogenic differentiation. Moreover, GPER1 silencing diminishes cell proliferation and adipogenic differentiation. In parallel, 17β-estradiol elevates the protein level of nuclear p-p65. Furthermore, the phosphorylation of p65 is enhanced by G1 but inhibited by G15 and GPER1 silencing. In addition, the phosphorylation of p65 is mediated by ERK1/2, suggesting that estrogen targeting GPER1 regulates cell proliferation and adipogenic differentiation of gADSCs through the ERK1/2-NF-κB signaling pathway. This study may provide a strong theoretical basis for improving meat quality, flavor, and cold resistance of livestock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.