Abstract

A novel method for the detection and inactivation of aflatoxin B1 (AFB1) is presented based on the first-principles method. We first investigate g-C3N5 nanotubes for the adsorption of AFB1 and then achieve the adsorption and inactivation of AFB1 on the g-C3N5 nanotubes with the OH group. The calculated results demonstrate that the band gaps of both armchair and zigzag g-C3N5 nanotubes decrease as the diameters increase and gradually converge to that of the g-C3N5 nanosheet. AFB1 prefers to adsorb at site C of g-C3N5 nanotubes. AFB1 reduces the band gap and enhances the electrical conductivity of pristine g-C3N5 nanotubes. The introduction of the OH group on the g-C3N5 nanotubes could destroy the C=C of the terminal furan ring of AFB1 and form a new substance AFB1–9‑hydroxy (AFB1OH), resulting in the inactivation of the toxicity of AFB1. Thus g-C3N5 nanotubes may be not only a superior adsorbent but also a promising sensing and inactivation medium for AFB1 in future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call