Abstract

In this paper, a facile hydrothermal approach was used to integrate graphitic carbon nitride dots (CNDs) with hetaerolite (ZnMn2O4) at different weight percentages. The morphology, microstructure, texture, electronic, phase composition, and electrochemical properties were identified by field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), ultraviolet-visible diffuse reflectance (UV-vis DR), photoluminescence (PL), electrochemical impedance spectroscopy (EIS), Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH), and photocurrent density. The results of XRD, FT-IR, EDX, and XPS analyses confirmed the synthesis of CNDs/ZnMn2O4 (20%) nanocomposite. As per PL, EIS, and photocurrent outcomes, the binary CNDs/ZnMn2O4 nanocomposite revealed superior features for interfacial transferring of charge carriers. The developed p–n heterojunction at the interface of CNDs and ZnMn2O4 nanoparticles partaken a significant role in the impressive charge segregation and migration. The binary nanocomposites were employed for the photodegradation of several dye pollutants, including rhodamine B (RhB), fuchsin, malachite green (MG), and methylene blue (MB) at visible wavelengths. Amongst the fabricated photocatalysts, the CNDs/ZnMn2O4 (20%) nanocomposite gave rise to about 98% RhB degradation efficiency within 45 min with the rate constant of 747 × 10−4 min−1, which was 66.5-, 3.44-, and 2.72-fold superior to the activities of CN, CNDs, and ZnMn2O4 photocatalysts, respectively. The impressive photodegradation performance of this nanocomposite was not only associated with the capacity for impressive visible-light absorption and boosted separation and transport of charge carriers, but also with its large surface area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.