Abstract

In this paper Adaptive Fuzzy Systems are used as intelligent identification systems for nonlinear plants. A new technique to design the fuzzy system that relies on the minimisation of a loss function is presented. The design technique uses the centres of the fuzzy sets (labels) at the antecedent part of the Rule Base as the estimated parameters. This parametrisation has the Linear in The Parameters (LITPs) characteristic that allows standard parameter estimation technique to be used to estimate the parameters of the fuzzy system. The combination of the fuzzy system and the estimation method then performs as a nonlinear estimator. If several fuzzy sets are defined for the input variables at the antecedent part, the fuzzy system (“fuzzy estimator”) then behaves as a collection of nonlinear estimators where different rule's regions have different parameters. The proposed scheme is potentially capable of estimating the parameters of highly nonlinear plants. Simulation examples, which use plants with highly nonlinear gain, show the power of the proposed estimation scheme in comparison to estimation using linear model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.