Abstract

The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.