Abstract
We study the properties of exact (all level k) quantum coherent states in the context of string theory on a group manifold (WZWN models). Coherent states of WZWN models may help to solve the unitarity problem: having positive norm, they consistently describe the very massive string states (otherwise excluded by the spin-level condition). These states can be constructed by (at least) two alternative procedures: (i) as the exponential of the creation operator on the ground state, and (ii) as eigenstates of the annihilation operator. In the k→∞ limit, all the known properties of ordinary coherent states are recovered. States (i) and (ii) (which are equivalent in the context of ordinary quantum mechanics and string theory in flat spacetime) are not equivalent in the context of WZWN models. The set (i) was constructed by the authors in the previous article. In this paper we provide the construction of states (ii), we compare the two sets and discuss their properties. We analyze the uncertainty relation, and show that states (ii) satisfy automatically the minimal uncertainty condition for any k; they are thus quasiclassical, in some sense more classical than states (i) which only satisfy it in the k→∞ limit. Modification to the Heisenberg relation is given by 2 H/k , where H is connected to the string energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.