Abstract

Infrared image segmentation is a challenging task, due to interference of complex background and appearance inhomogeneity of foreground objects. A critical defect of fuzzy clustering for infrared image segmentation is that the method treats image pixels or fragments in isolation. In this paper, we propose to adopt self-representation from sparse subspace clustering in fuzzy clustering, aiming to introduce global correlation information into fuzzy clustering. Meanwhile, to apply sparse subspace clustering for non-linear samples from an infrared image, we leverage membership from fuzzy clustering to improve conventional sparse subspace clustering. The contributions of this paper are fourfold. First, by introducing self-representation coefficients modeled in sparse subspace clustering based on high-dimensional features, fuzzy clustering is capable of utilizing global information to resist complex background as well as intensity inhomogeneity of objects, so as to improve clustering accuracy. Second, fuzzy membership is tactfully exploited in the sparse subspace clustering framework. Thereby, the bottleneck of conventional sparse subspace clustering methods, that they could be barely applied to nonlinear samples, can be surmounted. Third, as we integrate fuzzy clustering and subspace clustering in a unified framework, features from two different aspects are employed, contributing to precise clustering results. Finally, we further incorporate neighbor information into clustering, thus effectively solving the uneven intensity problem in infrared image segmentation. Experiments examine the feasibility of proposed methods on various infrared images. Segmentation results demonstrate the effectiveness and efficiency of the proposed methods, which proves the superiority compared to other fuzzy clustering methods and sparse space clustering methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.