Abstract

Fuzzy regression models are developed to construct the relationship between explanatory variables and responses in a fuzzy environment. In order to increase the explanatory performance of the model, the least-squares method is applied to determine the numeric coefficients based on the concept of distance. Unlike most existing approaches, the numeric coefficients in the proposed model can have negative values. The proposed model minimizes total estimation error in terms of the sum of the average squared distance between the observed and estimated responses based on a few alpha-cuts. The proposed approach is not limited to triangular fuzzy numbers; it can be used to carry out a large number of fuzzy observations efficiently because the model is based on traditional statistical methods. Comparisons with existing methods show that based on the total estimation error using the mean squared error and Kim and Bishu's criterion, the explanatory performance of the proposed model is satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.