Abstract

Applications of switched reluctance motor (SRM) to direct drive robot are increasingly popular because of its valuable advantages. However, a greatest potential defect its torque ripple owing to the significant nonlinearities. In this paper, a fuzzy neural network (FNN) is applied to control the SRM torque at the goal of the torque-ripple minimization. The desired current provided by FNN model compensates the nonlinearities and uncertainties of SRM. On the basis of FNN-based current closed-loop system, the trajectory tracking controller is designed by using the dynamic model of the manipulator, where the torque control method cancels the nonlinearities and cross-coupling terms. A single link robot manipulator directly driven by a four-phase 8/6 pole SRM operates in a sinusoidal trajectory tracking rotation. The simulated results verify the proposed control method and a fast convergence that the robot manipulator follows the desired trajectory in a 0.9-s time interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.