Abstract
Applications of switched reluctance motor (SRM) to direct drive robot are increasingly popular because of its valuable advantages. However, the greatest potential defect is its torque ripple owing to the significant nonlinearities. In this paper, a fuzzy neural network (FNN) is applied to control the SRM torque at the goal of the torque-ripple minimization. The desired current provided by FNN model compensates the nonlinearities and uncertainties of SRM. On the basis of FNN-based current closed-loop system, the trajectory tracking controller is designed by using the dynamic model of the manipulator, where the torque control method cancels the nonlinearities and cross-coupling terms. A single link robot manipulator directly driven by a four-phase 8/6-pole SRM operates in a sinusoidal trajectory tracking rotation. The simulated results verify the proposed control method and a fast convergence that the robot manipulator follows the desired trajectory in a 0.9-s time interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Cognitive Informatics and Natural Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.