Abstract

The objective of this manuscript is to design a controller to enhance the degree of stability through small signal analysis in case of a grid connected permanent magnet synchronous generator (PMSG)-based wind turbine and to ensure an optimal set of control parameters to achieve an enhanced performance. The optimal control parameters are computed by optimising the placement of system eigenvalues and net errors by formulating a fuzzy-based multi-objective approach. The idea behind the formulation of the objective function through a multi-objective approach involves the association of error with relative stability of the system through computation of the real parts of eigenvalues. To find the optimal control gains, a two-fold mutation-based differential evolution optimisation is used. Results from a MATLAB-based model are presented for validation of the proposed technique to demonstrate the system stability when subjected to wind speed variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call