Abstract

Abstract A fuzzy model was designed to predict changes in surface tension and maximum absorbance due to self-assembly in a DMF solution of poly{1,1′-ferrocene-diamide-[1,3-bis(propylene) tetramethyl-disiloxane} as a function of temperature and concentration. The building of fuzzy rule-based inference systems appears as a grey-box because it allows interpretation of the knowledge contained in the model as well as its improvement with a-priori knowledge. The method provides accurate results and increases the efficiency of utilizing the available information in the model. Small mean squared errors (0.0064 for absorbance and 0.79 for surface tension) and strong correlations between experiment and simulated results (0.93 and 0.97, respectively) were found during model validation. The results showed that it is feasible to apply a Mamdani fuzzy inference system to the estimation of optical and surface properties of a ferrocenylsiloxane polyamide solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.