Abstract
A fuzzy model predictive control (FMPC) approach is introduced to design a control system for a highly nonlinear process. In this approach, a process system is described by a fuzzy convolution model that consists of a number of quasi-linear fuzzy implications. In controller design, prediction errors and control energy are minimized through a two-layered iterative optimization process. At the lower layer, optimal local control policies are identified to minimize prediction errors in each subsystem. A near optimum is then identified through coordinating the subsystems to reach an overall minimum prediction error at the upper layer. The two-layered computing scheme avoids extensive online nonlinear optimization and permits the design of a controller based on linear control theory. The efficacy of the FMPC approach is demonstrated through three examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.