Abstract
This paper presents two strategies of nonlinear predictive control based on a Takagi-Sugeno fuzzy model. The first one introduces a fuzzy logic-based modeling methodology, where a nonlinear system is divided into a number of linear subsystems. So the linear model based predictive control (MPC) technique is used for each subsystem. In the second one, the fuzzy model is considered as a nonlinear model of the system and the control signal is obtained by minimizing either the cumulative differences or the instant difference between set-point and fuzzy model output. The efficiency of these two fuzzy model predictive control (FMPC) approaches is demonstrated through two examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.