Abstract
A fuzzy logic prediction model for the 28-day compressive strength of cement mortar under standard curing conditions was created. Data collected from a cement plant were used in the model construction and testing. The input variables of alkali, Blaine, SO 3, and C 3S and the output variable of 28-day cement strength were fuzzified by the use of artificial neural networks (ANNs), and triangular membership functions were employed for the fuzzy subsets. The Mamdani fuzzy rules relating the input variables to the output variable were created by the ANN model and were laid out in the If–Then format. Product (prod) inference operator and the centre of gravity (COG; centroid) defuzzification methods were employed. The prediction of 50 sets of the 28-day cement strength data by the developed fuzzy model was quite satisfactory. The average percentage error levels in the fuzzy model were successfully low (2.69%). The model was compared with the ANN model for its error levels and ease of application. The results indicated that through the application of fuzzy logic algorithm, a more user friendly and more explicit model than the ANNs could be produced within successfully low error margins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.