Abstract

Unification and generalization are operations on two terms computing respectively their greatest lower bound and least upper bound when the terms are quasi-ordered by subsumption up to variable renaming (i.e., t1⪯t2 iff t1=t2σ for some variable substitution σ). When term signatures are such that distinct functor symbols may be related with a fuzzy equivalence (called a similarity), these operations can be formally extended to tolerate mismatches on functor names and/or arity or argument order. We reformulate and extend previous work with a declarative approach defining unification and generalization as sets of axioms and rules forming a complete constraint-normalization proof system. These include the Reynolds-Plotkin term-generalization procedures, Maria Sessa's “weak” unification with partially fuzzy signatures and its corresponding generalization, as well as novel extensions of such operations to signatures with weaker functor similarities (i.e., with possibly different arities). One advantage of this approach is that it requires no modification of the conventional data structures for terms and substitutions. This and the fact that these declarative specifications are efficiently executable conditional Horn-clauses offers great practical potential for fuzzy information-handling applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.