Abstract
Fuzzy clustering algorithm especially the fuzzy c-means (FCM) algorithm has been widely used for segmentation of brain magnetic resonance (MR) images. However, the conventional FCM algorithm has a very serious shortcoming, i.e., the algorithm tends to balance the number of points in each cluster during the classification. Therefore, when this algorithm is applied to segment the MR images with quite different size of objects, it will lead to bad segmentation. To overcome this problem, a novel fuzzy expectation maximization (FEM) algorithm is presented in this paper. The algorithm is developed by extending the classical hard EM algorithm into soft EM algorithm through integrating the fuzzy and statistical techniques. Compared with the FCM algorithm, the experimental results on MR image segmentation clearly indicate that the proposed FEM algorithm has better performance for the segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.