Abstract
Training with use of mechatronic devices is an innovative rehabilitation method for patients with various locomotor dysfunction. High efficiency of training is noted in systems that combine a treadmill or orthosis with a body weight support system. Speed control is a limitation of such rehabilitation systems. In commercially available devices, the treadmill speed is constant or set by the therapist. Even better training results should be obtained for devices in which the speed of the treadmill will be automatically adjusted to the patient walking pace. This study presents a mechatronic device for locomotor training that uses an algorithm to adjust the speed of the treadmill. This speed is controlled with use of a sensor that measures the rope inclination. The end of rope is fastened to the orthopaedic harness. Speed control is realized in such a way that ensures the smallest possible swing angle of the rope. A fuzzy controller was applied to adjust the treadmill speed. The drive system of the treadmill is equipped in a servodrive with PMSM motor and energy recovery module, which allows smooth speed control, limiting acceleration and minimizing electricity consumption. The presented solution was implemented in a real object and subjected to experimental tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.