Abstract
With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile robot system combined with a body weight support (BWS) system for gait rehabilitation. The BWS system was designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the autonomous guided vehicle driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a non-holonomic mobile robot was applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation centre. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method, one of the existing geometric path-tracking methods. The effectiveness of the proposed method was verified through real experiments that were conducted for path tracking with static and dynamic obstacle avoidance. Finally, through electromyography signal measurement of the subject, the performance of the proposed system in a real operation condition was evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.