Abstract
This paper proposes a connection admission control (CAC) method for asynchronous transfer mode (ATM) networks based on the possibility distribution of cell loss ratio (CLR). The possibility distribution is estimated in a fuzzy inference scheme by using observed data of the CLR. This method makes possible secure CAC, thereby guaranteeing the allowed CLR. First, a fuzzy inference method is proposed, based on a weighted average of fuzzy sets, in order to estimate the possibility distribution of the CLR. In contrast to conventional methods, the proposed inference method can avoid estimating excessively large values of the CLR. Second, the learning algorithm is considered for tuning fuzzy rules for inference. In this, energy functions are derived so as to efficiently achieve higher multiplexing gain by applying them to CAC. Because the upper bound of the CLR can easily be obtained from the possibility distribution by using this algorithm, CAC can be performed guaranteeing the allowed CLR. The simulation studies show that the proposed method can well extract the upper bound of the CLR from the observed data. The proposed method also makes possible self-compensation in real time for the case where the estimated CLR is smaller than the observed CLR. It preserves the guarantee of the CLR as much as possible in operation of ATM switches. Third, a CAC method which uses the fuzzy inference mentioned above is proposed. In the area with no observed CLR data, fuzzy rules are automatically generated from the fuzzy rules already tuned by the learning algorithm with the existing observed CLR data. Such areas exist because of the absence of experience in connections. This method can guarantee the allowed CLR in the CAC and attains a high multiplex gain as is possible. The simulation studies show its feasibility. Finally, this paper concludes with some brief discussions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.