Abstract

Temporal data mining is one of the interesting problems in computer science and its application has been performed in a wide variety of fields. The difference between the temporal data mining and data mining is the use of variable time. Therefore, the method used must be capable of processing variables of time. Compared with other methods, conditional random field has advantages in the processing variables of time. The method is a directed graph models that has been widely applied for segmenting and labelling sequence data that appears in various domains. In this study, we proposed use of Fuzzy Logic to be applied in Conditional Random Fields to overcome the problems of uncertainty. The experiment is compared Fuzzy Conditional Random Fields, Conditional Random Fields, and Hidden Markov Models. The result showed that accuracy of Fuzzy Conditional Random Fields is the best.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.