Abstract
In this paper, a hybrid decision tree learning approach is presented that combines fuzzy C-means method and the ID3 algorithm in decision tree construction from continuous-valued features. The fuzzy C-means method is applied to find a number of central means for each continuous-valued feature and thus discretize such features. The ID3 algorithm is subsequently used to build a decision tree from the discretized data. Preliminary experiments using a real-world time-series data set from the Louisiana coast are reported that compare our method with the OC1 system for oblique decision tree learning. The experiment results seem to suggest that the proposed hybrid method achieves better or comparable classification accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have