Abstract

Fuzzy systems are represented as series expansions of fuzzy basis functions which are algebraic superpositions of fuzzy membership functions. Using the Stone-Weierstrass theorem, it is proved that linear combinations of the fuzzy basis functions are capable of uniformly approximating any real continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, an orthogonal least-squares (OLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs; then, the OLS algorithm is used to select significant fuzzy basis functions which are used to construct the final fuzzy system. The fuzzy basis function expansion is used to approximate a controller for the nonlinear ball and beam system, and the simulation results show that the control performance is improved by incorporating some common-sense fuzzy control rules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.