Abstract
Intelligent systems may be viewed as a framework for solving the problems of nonlinear system control. The intelligence of the system in the nonlinear or changing environment is used to recognize in which environment the system currently resides and to service it appropriately. This paper presents a general methodology of adaptive control based on multiple models in fuzzy form to deal with plants with unknown parameters which depend on known plant variables. We introduce a novel model-reference fuzzy adaptive control system which is based on the fuzzy basis function expansion. The generality of the proposed algorithm is substantiated by the Stone-Weierstrass theorem which indicates that any continuous function can be approximated by fuzzy basis function expansion. In the sense of adaptive control this implies the adaptive law with fuzzified adaptive parameters which are obtained using Lyapunov stability criterion. The combination of adaptive control theory based on models obtained by fuzzy basis function expansion results in fuzzy direct model-reference adaptive control which provides higher adaptation ability than basic adaptive-control systems. The proposed control algorithm is the extension of direct model-reference fuzzy adaptive-control to nonlinear plants. The direct fuzzy adaptive controller directly adjusts the parameter of the fuzzy controller to achieve approximate asymptotic tracking of the model-reference input. The main advantage of the proposed approach is simplicity together with high performance, and it has been shown that the closed-loop system using the direct fuzzy adaptive controller is globally stable and the tracking error converges to the residual set which depends on fuzzification properties. The proposed approach can be implemented on a wide range of industrial processes. In the paper the foundation of the proposed algorithm are given and some simulation examples are shown and discussed. © 2002 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.