Abstract

In this study, the fuzzy-based reference flux estimator (RFE), reference torque estimator (RTE) and sector rotation strategy called fuzzy logic estimator are proposed to direct torque control of induction motor (DTC-IM) drive for performance improvement. The basic DTC-IM drive with conventional RFE, RTE and sector division causes large torque ripple, variable switching frequency and uneven voltage vector contribution in stator flux. The torque and speed responses of the proposed system are investigated with load variations. The simulation results of the proposed DTC-IM drive are compared with the basic DTC-IM drive. The assessment of the proposed system shows improved performance. A hardware is developed using Xilinx Spartan-6XC6SLX45-Field Programmable Gate Array (FPGA) Kit for experimental verification of the results. Moreover, sinusoidal pulse width modulation and space vector pulse width modulation techniques are applied to reduce the torque ripples. The performance of the drive is investigated for various speed ranges. The comparison of the simulated and experimental results proves that the proposed fuzzy-based DTC-IM drive provides better performance than the basic DTC-IM drive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call