Abstract

The World health organization (WHO) reported that cardiovascular disease is the leading cause of death worldwide, particularly in developing countries. But while diagnosing cardiovascular disease, medical practitioners might have differences of opinions and faced challenging when there is inadequate information and uncertainty of the problem. Therefore, to resolve ambiguity and vagueness in diagnosing disease, a perfect decision-making model is required to assist medical practitioners in detecting the disease at an early stage. Thus, this study designs a fuzzy analytic hierarchy process (FAHP) point-factored inference system to detect cardiovascular disease. The attributes are selected and classified into sub-attributes and point factor scale using the clinical data, medical practitioners, and literature review. Fuzzy AHP is used in calculating the attribute weights, the strings are generated using the Mamdani fuzzy inference system, and the strength of each set of fuzzy rules is calculated by multiplying the attribute weights with the point factor scale. The string weights determine the output ranges of cardiovascular disease. Moreover, the results are validated using sensitivity analysis, and comparative analysis is performed with AHP techniques. The results show that the proposed method outperforms other methods, which are elucidated by the case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.