Abstract
Flooding is one of the most problematic natural events affecting urban areas. In this regard, developing flooding models plays a crucial role in reducing flood-induced losses and assists city managers to determine flooding-prone areas (FPAs). The aim of this study is to investigate on the prediction capability of fuzzy analytical hierarchy process (FAHP) and Mamdani fuzzy inference system (MFIS) methods as two completely and semi-knowledge-based models to identify FPAs in Tehran, Iran. Six flooding conditioning factors including density of channel, distance from channel, land use, elevation, slope, and water discharge were extracted from various geo-spatial datasets. A total of 62 flooding locations were identified in the study area based on the existing reports and field surveys. Of these, 44 (70%) floods were randomly selected as training data and the remaining 18 (30%) cases were used for the validation purposes. After the data preparation step, data were processed by means of two statistical (FAHP) and soft computing (MFIS) methods. Unlike most statistical and soft computing approaches which use flooding inventory data for both training and evaluation of models, only conditioning factor was involved in data processing and inventory data were used in the current study to assess models prediction accuracy. Also, the efficiency of two approaches was evaluated by pixel matching (PM) and area under curve to validate the prediction capability of models. The prediction rate for MFIS and FAHP was 89% and 84%, respectively. Moreover, according to the results obtained from PM, it was found out that about 90% of known flooding locations fell in high-risk areas, whereas it was 83% for FAHP, indicating that flooding susceptibility map of MFIS has higher performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.