Abstract
We present a new model for the electricity spot price dynamics, which is able to capture seasonality, low-frequency dynamics and extreme spikes in the market. Instead of the usual purely deterministic trend we introduce a non-stationary independent increment process for the low-frequency dynamics, and model the large fluctuations by a non-Gaussian stable CARMA process. The model allows for analytic futures prices, and we apply these to model and estimate the whole market consistently. Besides standard parameter estimation, an estimation procedure is suggested, where we fit the non-stationary trend using futures data with long time until delivery, and a robust L1-filter to find the states of the CARMA process. The procedure also involves the empirical and theoretical risk premia which – as a by-product – are also estimated. We apply this procedure to data from the German electricity exchange EEX, where we split the empirical analysis into base load and peak load prices. We find an overall negative risk premium for the base load futures contracts, except for contracts close to delivery, where a small positive risk premium is detected. Peak load contracts, on the other hand, show a clear positive risk premium, when they are close to delivery, while contracts in the longer end also have a negative premium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.