Abstract

Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

Highlights

  • Air pollution is a major environmental factor associated with health impacts [1,2]

  • The overall objective of this study is to assess whether projected future changes in climate, emissions and population will have a significant effect on air pollution related human health impacts

  • The robustness of the results is assessed by including air pollution simulations made with the two different Chemical Transport Model (CTM): Danish Eulerian Hemispheric Model (DEHM) and

Read more

Summary

Introduction

Air pollution is a major environmental factor associated with health impacts [1,2]. Air pollution and its impacts on environment and human health are efficiently studied by integrated assessment systems. These integrated systems connect models from various scientific disciplines (e.g., atmospheric science, epidemiology, public health and economics). In Europe, the integrated Greenhouse gas and Air pollution. INteractions and Synergies (GAINS) system is used as a basis for emission control strategies. GAINS can be used to identify cost-effective strategies for limiting air pollution and the related negative effects [3]. Integrated systems that operate on sub-national to European scales include the UK Integrated

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call