Abstract

The main goal of tooth restoration aims at achieving mineralization of initial enamel and dentinal lesions in native form. Most of the restorative materials and remineralization adjuvants for enamel and dentin mineralization are evidenced in the literature. Although commercially available restorative materials exhibit superior esthetics, mechanical properties and cost effectiveness, durability of the restoration threatened by the occurrence of inadequate strength, long-term solubility, and weaker adhesion to tooth and accelerated degradation after being bonded to tooth structure. Recently, the role of biomimetic science in restorative dentistry aims at creating a restoration that can be highly compatible with the structural, functional and biologic properties of dental tissues to reproduce and emulate the original performance of the intact tooth with high durability. In order to recover the prismatic structure in mineral-depleted enamel and to achieve interfibrillar mineralization in dentin, non-collagenous protein analogues have been proposed as templates for apatite deposition. Biomimetic analogues must be necessary to achieve functional mineralization and to recover the dynamic mechanical properties of teeth. The use of these analogues associated with ion-releasing materials seems to be a promising approach for both enamel and dentin remineralization. This review enlightens the current and future perspectives of biomimetic analogues used for enamel and dentin remineralization as the clinical translation of this biomimetic research can be considered as the boon to restorative dentistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call