Abstract

Background: Land use/land cover (LULC), change is one of the major contributors to global environmental and climate variations. The ability to predict future LULC is crucial for environmental engineers, civil engineers, urban designers, and natural resource managers for planning activities. Methods: TerrSet Geospatial Monitoring and Modelling System in conjunction with ArcGIS Pro 2.8 were used to process LULC data for the region of the Lepelle River Basin (LRB) of South Africa. Driver variables such as population density, slope, elevation as well as the Euclidean distances of cities, roads, highways, railroads, parks and restricted areas, towns to the LRB in combination with LULC data were analysed using the Land Change Modeller (LCM) and Cellular-Automata Markov (CAM) model. Results: The results reveal an array of losses (-) and gains (+) for certain LULC classes in the LRB by the year 2040: natural vegetation (+8.5%), plantations (+3.5%), water bodies (-31.6%), bare ground (-8.8%), cultivated land (-29.3%), built-up areas (+10.6%) and mines (+14.4%). Conclusions: The results point to the conversion of land uses from natural to anthropogenic by 2040. These changes also highlight how the potential losses associated with resources such as water will negatively impact society and ecosystem functioning in the LRB by exacerbating water scarcity driven by climate change. This modelling study seeks to provides a decision support system for predicting future land resource utilization in the LRB and perhaps assist for planning purposes.

Highlights

  • Socioeconomic activities together with related human population increase and general increase in urbanization, elucidated by the rate of expansion of cities globally, result in unimaginable land use/land cover (LULC) changes

  • Analysis of LULC from 1990 to 2017/2018 to 2040 A varying number of changes have occurred across the classes of land uses in the Lepelle River Basin (LRB) between 1990, 2017/2018, and 2040

  • From the 2040 simulation, it is seen that built-up areas as well as areas being mined and plantation areas will increase slightly while natural vegetation increases quite considerably due to used up abandoned mines and less cultivation

Read more

Summary

Introduction

Socioeconomic activities together with related human population increase and general increase in urbanization, elucidated by the rate of expansion of cities globally, result in unimaginable land use/land cover (LULC) changes. Methods: TerrSet Geospatial Monitoring and Modelling System in conjunction with ArcGIS Pro 2.8 were used to process LULC data for the region of the Lepelle River Basin (LRB) of South Africa Driver variables such as population density, slope, elevation as well as the Euclidean distances of cities, roads, highways, railroads, parks and restricted areas, towns to the LRB in combination with LULC data were analysed using the Land Change Modeller (LCM) and CellularAutomata Markov (CAM) model. Conclusions: The results point to the conversion of land uses from natural to anthropogenic by 2040 These changes highlight how the potential losses associated with resources such as water will negatively impact society and ecosystem functioning in the LRB by exacerbating water scarcity driven by climate change. This modelling study seeks to provides a decision support system for predicting future land resource utilization in the LRB and perhaps assist for planning purposes

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.