Abstract

Hydrological drought is assessed through river flow, which depends on river runoff and water withdrawal. This study proposed a framework to project future hydrological droughts considering agricultural water withdrawal (AWW) for shared socioeconomic pathway (SSP) scenarios. The relationship between AWW and potential evapotranspiration (PET) was determined using a deep belief network (DBN) model and then applied to estimate future AWW using projections of the twelve global climate models (GCMs). 12 GCMs were bias-corrected using the quantile mapping method, climate variables were generated, and river flow was estimated using the soil and water assessment tool (SWAT) model. The standardized runoff index (SRI) was used to project the changes in hydrological drought characteristics. The results revealed a higher occurrence of severe droughts in the future. Droughts would be more frequent in the near future (2021–2060) than in the far future (2061–2100) and more severe when AWW is considered. Droughts would also be more severe for SSP5-8.5 than for SSP2-4.5. The study revealed that the increased PET due to rising temperatures is the primary cause of the increased drought frequency and severity. The AWW will accelerate the drought severities in the future in the Yeongsan River basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.