Abstract
Recent progress in fusion development combined with the rebirth of nuclear fission power has regenerated interest in fusion-fission hybrid reactors. Such systems could be applied to both low power research reactors for use in University and industrial research assemblies and power reactors. However most attention has been directed at D-T fusion drivers using Tokamak, ICF or various alternate confinement systems like FRCs. However, the necessity to have large devices and breed tritium in the blanket complicates the concept. Here we propose the inertial electrostatic confinement (IEC) fusion approach since it offers the advantages of simple structural, high power density and a non-Maxwellian beam dominated plasma suited for burning advanced fuels to minimize tritium involvement. The cylindrical IEC allows a small compact unit which can be inserted into fuel element slots in the fission reactor core, thus providing a compact overall system and excellent neutronic coupling. The basic physics for the IEC has been demonstrated in small-scale laboratory experiments close to levels needed for driving a subcritical assembly for use in student teaching labs. However, for use in future high power hybrids significant scale-up in source strength is required. Scale up using an external ion source (e.g. a Helicon) so the background gas pressure is minimized in the reaction zone potentially offers a route to the required neutron source strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.