Abstract

AbstractSource images are frequently corrupted by noise before fusion, which will lead to the quality decline of fused image and the inconvenience for subsequent observation. However, at present, most of the traditional medical image fusion scheme cannot be implemented in noisy environment. Besides, the existing fusion methods scarcely make full use of the dependencies between source images. In this research, a novel fusion algorithm based on the statistical properties of wavelet coefficients is proposed, which incorporates fusion and denoising simultaneously. In the proposed algorithm, the new saliency and matching measures are defined by two distributions: the marginal statistical distribution of single wavelet coefficient fit by the generalized Gaussian Distribution and joint distribution of dual source wavelet coefficients modeled by the anisotropic bivariate Laplacian model. Additionally, the bivariate shrinkage is introduced to develop a noise robust fusion method, and a moment‐based parameter estimation applied in the fusion scheme is also exploited in denoising method, which allows to achieve the consistency of fusion and denoising. The experiments demonstrate that the proposed algorithm performs very well on both noisy and noise‐free images from multimodal medical datasets (computerized tomography, magnetic resonance imaging, magnetic resonance angiography, etc.), outperforming the conventional methods in terms of both fusion quality and noise reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.