Abstract
Precisely distinguishing between malignant and benign lung tumors is pivotal for suggesting therapeutic strategies and enhancing prognosis, yet this differentiation remains a daunting task. The growth rates, metastatic potentials, and prognoses of benign and malignant tumors differ significantly. Developing specialized treatment protocols tailored to various tumor types is essential for enhancing patient survival outcomes. Employing laser-induced breakdown spectroscopy (LIBS) in conjunction with a deep learning methodology, we attained a high-precision differential diagnosis of malignant and benign lung tumors. First, LIBS spectra of malignant tumors, benign tumors, and normal tissues were collected. The spectra were preprocessed and Z score normalized. Then, the intensities of the Mg II 279.6, Mg I 285.2, Ca II 393.4, Cu II 518.3, and Na I 589.6 nm lines were analyzed in the spectra of the three tissues. The analytical results show that the elemental lines have different contents in the three tissues and can be used as a basis for distinguishing between the three tissues. Finally, the RF-1D ResNet model was constructed by combining the feature importance assessment method of random forest (RF) and one-dimensional residual network (1D ResNet). The classification accuracy, precision, sensitivity, and specificity of the RF-1D ResNet model were 91.1%, 91.6%, 91.3%, and 91.3%, respectively. And the model demonstrates superior performance with an area under the curve (AUC) value of 0.99. The above results show that combining LIBS with deep learning is an effective way to diagnose malignant and benign tumors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have