Abstract

The first measurements and numerical simulations of fusion neutrons from the gas–pusher interface of indirectly-driven inertial confinement fusion implosions have been performed using hydrogen-filled capsules made with a deuterated inner layer. Nonlinear saturation of the growth of hydrodynamic perturbations in high linear growth factor (≃325) implosions was varied by adjusting the initial surface roughness of the capsule. The neutron yields are in quantitative agreement with the direct simulations of perturbation growth, and also with a linear mode superposition and saturation model including enhanced thermal loss in the mixed region. Neutron spectra from these capsules are broader than expected for the calculated ion temperatures, suggesting the presence of nonthermal broadening from mass motion during the fusion burn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.