Abstract
The family of models on the square lattice includes a dilute loop model, a -vertex model and, at roots of unity, a family of RSOS models. The fused transfer matrices of the general loop and vertex models are shown to satisfy -type fusion hierarchies. We use these to derive explicit - and -systems of functional equations. At roots of unity, we further derive closure identities for the functional relations and show that the universal -system closes finitely. The RSOS models are shown to satisfy the same functional and closure identities but with finite truncation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have