Abstract

We study generalized symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. This paper follows our companion paper on gapped phases and anomalies associated with these symmetries. In the present work we focus on identifying fusion category symmetries, using both specialized 1+1D methods such as the modular bootstrap and (rational) conformal field theory (CFT), as well as general methods based on gauging finite symmetries, that extend to all dimensions. We apply these methods to c = 1 CFTs and uncover a rich structure. We find that even those c = 1 CFTs with only finite group-like symmetries can have continuous fusion category symmetries, and prove a Noether theorem that relates such symmetries in general to non-local conserved currents. We also use these symmetries to derive new constraints on RG flows between 1+1D CFTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.